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Abstract—This paper considers nonlinear continuous–discrete (hybrid) systems containing two
subsystems of differential and difference equations, respectively, and one-dimensional (scalar)
or multidimensional (vector) control. The transition from a nonlinear hybrid system with a
constant sampling step h > 0 to an equivalent, in a natural sense, nonlinear discrete dynamic
system is presented. Sufficient conditions are established, first, for reducing the first approx-
imation systems of nonlinear discrete systems to the Brunovský canonical form and, second,
for stabilizing such systems and nonlinear hybrid systems with control of different dimensions.
Algorithms for constructing stabilizing control laws for nonlinear hybrid systems are developed.
Numerical examples are provided to illustrate the effectiveness of this approach to stabilizing
nonlinear hybrid dynamic systems.
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1. INTRODUCTION

Stabilization of dynamic systems is one of the most important problems in control theory, which
is due to the demands of control practice and open (unsolved) scientific issues in this area [1–4].
The solution of this problem will ensure stable operating modes of dynamic systems and contribute
to solution of control problems for these systems.

Hybrid dynamic systems serve as mathematical models of real mechanical, technical, technolog-
ical, and other processes of a heterogeneous nature that cannot be described only by differential
equations. For example, control of aircraft and electric trains can be modeled only using a discrete
thrust regulator [5, 6]. Therefore, the main feature of such hybrid (continuous–discrete) dynamic
control systems is their adequacy to modeled objects [7], which, as a rule, have nonlinear operation
processes. Hence, the corresponding hybrid dynamic systems are nonlinear continuous–discrete
systems.

Among hybrid systems, there is a large class of systems stabilized by switching at appropriate
time instants [8]. However, the issues of stabilizing real dynamic control systems are inseparably
connected with their controllability issues.

Methods for stabilizing controlled dynamic systems have been created and developed for over
150 years [4]. Much experience has been gained in stabilization of continuous systems and dis-
crete systems; for example, see [9–16]. There are R&D results in the field of stabilizing linear
hybrid [3, 7, 17] and nonlinear hybrid systems described by differential equations with different
nonlinearities and a discrete state- or output-feedback controller [18–22]. However, the issues of
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stabilizing nonlinear hybrid systems with operation processes described by differential and dif-
ference equations and states containing both continuous and discrete components have not been
sufficiently studied so far.

This paper presents a general approach to stabilizing such nonlinear continuous–discrete (hybrid)
systems with one-dimensional (scalar) or multidimensional (vector) control and a constant sampling
step. The approach is based on the transition from a given nonlinear hybrid system to an equivalent,
in the natural sense, nonlinear discrete dynamic system.

The novelty of this study is as follows:

1) The concept of the Brunovský canonical form is introduced for the first approximation system
of a nonlinear discrete dynamic system with scalar control.

2) Sufficient conditions are established for reducing the first approximation system of an equiv-
alent nonlinear discrete system with scalar (vector) control to the Brunovský canonical form (i.e.,
to a set of independent subsystems each having the Brunovský canonical form).

3) Algorithms for reducing the first approximation systems of equivalent nonlinear discrete
systems (with both scalar and vector control) to the Brunovski canonical form are developed and
demonstrated by examples.

4) Sufficient conditions for stabilizing the first approximation systems of equivalent nonlinear
discrete dynamic control systems (both with scalar and vector control) are established.

5) Sufficient conditions for stabilizing nonlinear hybrid dynamic control systems with control of
different dimensions are established.

6) Algorithms for constructing stabilizing control laws for nonlinear hybrid systems with control
of different dimensions are developed and demonstrated by examples.

2. PROBLEM STATEMENT

Consider a nonlinear continuous–discrete control system of the form{
x′(t) = f(x(t), y(tk)), tk � t < tk+1

y(tk+1) = g(x(tk+1), y(tk), u(tk)), k = 0, 1, 2, . . .
(1)

with initial conditions

x(t0) = x0, y(t0) = y0, (2)

where x∈Rn and y ∈Rm are the state vectors of system (1) characterizing the behavior of its
continuous and discrete parts, respectively; u∈Rq is the control vector (input) of system (1); the
time instants tk define a uniform grid on R with a constant step h > 0, i.e., tk+1 − tk = h > 0,
k = 0, 1, 2, . . . and tk = kh; the functions f(x, y) and g(x, y, u) are continuously differentiable in
the aggregate of variables.

Assume that without control (u = 0),

f(0, 0) = 0, g(0, 0, 0) = 0. (3)

In other words, system (1) with u = 0 has the trivial equilibrium x = 0, y = 0.

System (1), (2) with a chosen control law u = u(tk), k = 0, 1, 2, . . . , operates in accordance with
the following standard scheme:

1) Initial conditions z0 = (x0, y0) are specified.
2) The solution x = ϕ0(t) of the Cauchy problem x′ = f(x, y0), x(t0) = x0, is found, and the

vectors x1 = ϕ0(t1) and y1 = g(x1, y0, u0), where u0 = u(t0), are constructed.
3) The solution x = ϕ1(t) of the Cauchy problem x′ = f(x, y1), x(t1) = x1, is found, and the

vectors x2 = ϕ1(t2) and y2 = g(x2, y1, u1), where u1 = u(t1), are constructed. And so on.
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Hence, the solution of system (1) with the initial point z0 = (x0, y0) and a chosen control law
u = u(tk), k = 0, 1, 2, . . . , is the function

z(t) = (x(t), y(t)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ϕ0(t), y0), t0 � t < t1
(ϕ1(t), y1), t1 � t < t2
(ϕ2(t), y2), t2 � t < t3

...

(4)

The components of the solution (4) have the following features: the function x(t) is continuous for
all t � 0, continuously differentiable on any interval (tk, tk+1), but not necessarily differentiable at
time instants t = tk, where k = 0, 1, 2, . . .; the function y(t) is piecewise constant and changes its
values at time instants t = tk, k = 0, 1, 2, . . . .

The main problem of this paper is to establish sufficient conditions for stabilizing systems (1)
and to design stabilizing control laws for such systems. The solution of this problem is based on
the transition from the nonlinear hybrid system (1) to an equivalent nonlinear discrete dynamic
system.

3. TRANSITION TO THE DISCRETE SYSTEM.
CONTROLLABILITY AND STABILIZABILITY OF SYSTEMS

Due to the relations (3), the functions f(x, y) and g(x, y, u) can be represented as

f(x, y) = A1x+B1y + a(x, y), g(x, y, u) = A2x+B2y +Cu+ b(x, y, u),

where A1 = f ′
x(0, 0), B1 = f ′

y(0, 0), A2 = g′x(0, 0, 0), B2 = g′y(0, 0, 0), and C = g′u(0, 0, 0) are ma-
trices of compatible dimensions and the smooth nonlinearities a(x, y) and b(x, y, u) satisfy the
relations

a(x, y) = o(‖x‖ + ‖y‖) as ‖x‖+ ‖y‖ → 0,

b(x, y, u) = o(‖x‖+ ‖y‖+ ‖u‖) as ‖x‖+ ‖y‖+ ‖u‖ → 0.

By denoting x(tk) = xk, y(tk) = yk, and u(tk) = uk, we write system (1) as the equivalent hybrid
system {

x′(t) = A1x(t) +B1yk + a(x(t), yk) , tk � t < tk+1

yk+1 = A2xk+1 +B2yk + Cuk + b(xk+1, yk, uk), k = 0, 1, 2, . . . .
(5)

Let detA1 = 0; by applying the shift operator along the trajectories of system x′ = f(x, y) over the
time from t = 0 to t = h > 0 (see [23]), we perform the transition from system (5) to a discrete
system of the form{

xk+1 = eA1hxk +A−1
1 (eA1h − I)B1yk + ε(xk, yk;h)

yk+1 =A2e
A1hxk+(A2A

−1
1 (eA1h− I)B1+B2)yk+Cuk+ δ(xk, yk, uk;h),

(6)

where

ε(xk, yk;h) = e(tk+h)A1

tk+h∫
tk

e−sA1a(p(s, xk, yk), yk)ds,

x = p(t, xk, yk) is the solution of the Cauchy problem

x′ = A1x+B1yk + a(x, yk), x(tk) = xk ;

δ(xk, yk, uk;h) = A2ε(xk, yk;h) + b(xk+1, yk, uk). (7)
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Note that the case of a singular matrix A1 can also be considered, but it will lead to substantially
more complicated formulas.

The discrete system (6) can be written in the compact form

zk+1 = A(h)zk +Buk + ξ(zk, uk, h), k = 0, 1, 2, . . . , (8)

where

zk =

[
xk
yk

]
, B =

[
O
C

]
, ξ(zk, uk, h) =

[
ε(xk, yk;h)
δ(xk, yk, uk;h)

]
,

A(h) is a block matrix of order (n+m) :

A(h) =

[
eA1h A−1

1 (eA1h − I)B1

A2e
A1h A2A

−1
1 (eA1h − I)B1 +B2

]
. (9)

System (6) with u = 0 (equivalently, system (8)) has the trivial equilibrium.

Based on [23] and condition (7), it can be established that

ε(x, y;h) = o(‖x‖+ ‖y‖) as ‖x‖+ ‖y‖ → 0,

δ(x, y, u;h) = o(‖x‖ + ‖y‖+ ‖u‖) as ‖x‖+ ‖y‖+ ‖u‖ → 0 .

Then the function ξ(z, u, h) in system (8) satisfies the condition

ξ(z, u, h) = o(‖z‖ + ‖u‖) as ‖z‖+ ‖u‖ → 0 . (10)

For a chosen control law u = u(tk), k = 0, 1, 2, . . . , the hybrid system (1) and the discrete system (6)
are equivalent in the following sense [8]:

• If (x(t), yk) is the solution of system (1), (xk, yk) will be the solution of system (6), where
xk = x(tk).

• If (xk, yk) is the solution of system (6), (x(t), yk) will be the solution of system (1), where x(t)
is the solution of the Cauchy problem x′ = f(x, yk), x(tk) = xk.

Therefore, systems (1) and (8) are equivalent as well.

Following [24–26], we introduce several notions.

Definition 1. The hybrid system (1) is said to be controllable for h = h0 > 0 if for any vectors
z(0), z(1) ∈Rn+m, there exists a control law u = u(tk), k = 0, 1, . . . , l − 1 (l∈N), such that z(tl) =
z(1), tl = t0 + lh0, for the solution z = z(t) of system (1) with the initial condition z(t0) = z(0).

Definition 2. The discrete system (8) is said to be controllable for h = h0 > 0 if for any states
z(0), z(1) ∈Rn+m, there exists a control law uk, k = 0, 1, . . . , l − 1 (l∈N), such that zl = z(1),
zl = z(tl) = z(t0 + lh0), for the solution zk, k = 0, 1, . . . , l, of system (8) with the initial condition
z0 = z(0).

For some h > 0, the equilibrium of systems (1) and (8) may be unstable.

Definition 3. The hybrid system (1) is said to be stabilizable for h = h0 > 0 if there exists a
piecewise constant function u = ϕ(t)∈Rq, tk � t < tk+1 , k = 0, 1, 2, . . . , such that system (1) with
the control law u = ϕ(t) has the asymptotically stable solution x = 0, y = 0 for h = h0 > 0.

Definition 4. The discrete system (8) is said to be stabilizable for h = h0 > 0 if there exists a
control law uk = Φ(zk), k = 0, 1, 2, . . . , such that system (8) has the asymptotically stable solution
z = 0 for h = h0 > 0.

Direct comparison of Definitions 1 and 2 yields the following result.

AUTOMATION AND REMOTE CONTROL Vol. 85 No. 9 2024



868 AKMANOVA

Theorem 1. The hybrid system (1) is controllable for h = h0 > 0 if and only if the discrete
system (8) is controllable for h = h0 > 0.

The proof of this theorem, as well as those of other important results of the paper, is postponed to
the Appendix.

The linear discrete system

zk+1 = A(h)zk +Buk, k = 0, 1, 2, . . . , (11)

is the first approximation system of the nonlinear discrete system (8).

Now we proceed to the issues of stabilizing system (1) considering its control peculiarities.

4. STABILIZATION OF THE HYBRID SYSTEM (1) WITH SCALAR CONTROL

Let u∈R1 in system (1); then the first approximation system of the corresponding discrete
system (8) takes the form

zk+1 = A(h)zk + buk, k = 0, 1, 2, . . . , (12)

where z ∈ Rn+m, A(h) is the matrix (9), b is a matrix of dimensions (n+m)× 1, and u∈R1.

Assume that for h = h0 > 0, system (12) satisfies the complete reachability condition, i.e.,

rank [b,A(h0)b,A
2(h0)b, . . . , A

n+m−1(h0)b] = n+m. (13)

which implies the controllability of system (12) for h = h0 > 0.

Note that condition (13) can be relaxed, e.g., by imposing the complete controllability condition
on system (12) for h = h0 > 0; for details, see [11, pp. 268–269].

We have the following result.

Theorem 2. Assume that the linear discrete system (12) satisfies condition (13). Then there
exists a transformation

z∗k = Szk, u∗k = αzk + uk, (14)

where detS = 0 and α is a matrix of dimensions 1× (n+m), reducing this system to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z∗k+1,1 = z∗k,2
z∗k+1,2 = z∗k,3

...
z∗k+1,n+m−1 = z∗k,n+m

z∗k+1,n+m =u∗k,

(15)

where z∗k,i denotes the ith component of the vector z∗k.
System (15) will be called the Brunovský canonical form of system (12) for h = h0 > 0.

Theorem 3. Assume that for h = h0 > 0, system (12) satisfies condition (13). Then it is stabi-
lizable for h = h0 > 0.

From the proof of Theorem 3 (see the Appendix) and equalities (14) we arrive at the following
fact.

Corollary 1. A control law uk = S∗zk, k = 0, 1, 2, . . . , where S∗ = pS − α, u∗k = pz∗k, stabilizes
the linear discrete system (12), and all eigenvalues of the matrix (A(h0) + bS∗) are smaller than 1
by their magnitude.
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Theorem 4. If the first approximation system (12) of the corresponding nonlinear discrete sys-
tem (8) satisfies condition (13), the corresponding hybrid system (1) will be stabilizable for
h = h0 > 0.

Example 1. It is required to construct a stabilizing control law for a hybrid system of the form⎧⎪⎨
⎪⎩
x′(t) = −x(t) + yk,1 + a(x(t), yk), tk � t < tk+1

yk+1,1 = x(tk+1) + yk,2 − uk + b1(x(tk+1), yk, uk)

yk+1,2 = −x(tk+1) + yk,1 + 0.5uk + b2(x(tk+1), yk, uk), k = 0, 1, 2, . . . ,

(16)

where x∈R1, y∈R2, u∈R1, a(x, y), b1(x, y, u), and b2(x, y, u) are smooth nonlinearities in accor-
dance with system (5), by reducing the corresponding discrete first approximation system to the
Brunovský canonical form.

For a nonlinear discrete system equivalent to (16), the first approximation system is a discrete
system of the form (12) with the matrices

A(h) =

⎡
⎢⎣ e−h 1− e−h 0

e−h 1− e−h 1
−e−h e−h 0

⎤
⎥⎦ , b =

⎡
⎢⎣ 0
−1
0.5

⎤
⎥⎦ .

It can be proved that this discrete system with all h : 0 < h = ln 4 is controllable.

Letting h0 = ln2 yields A(h0) =

⎡
⎢⎣ 0.5 0.5 0

0.5 0.5 1
−0.5 0.5 0

⎤
⎥⎦ ; note that the solution x = 0, y = 0 of sys-

tem (16) with u = 0 is stable (but not asymptotically stable). We compile the matrix F (h0) =
[b,A(h0)b,A

2(h0)b] :

F (h0) =

⎡
⎢⎣ 0 −0.5 −0.25
−1 0 −0.75
0.5 −0.5 0.25

⎤
⎥⎦ ; then F−1(h0) =

⎡
⎢⎣ 6 −4 −6

2 −2 −4
−8 4 8

⎤
⎥⎦ ,

f(h0) = [−8 4 8], S =

⎡
⎢⎣ f(h0)

f(h0)A(h0)

f(h0)A
2(h0)

⎤
⎥⎦ =

⎡
⎢⎣−8 4 8
−6 2 4
−4 0 2

⎤
⎥⎦ .

Then z∗k = Szk, which corresponds to the system⎧⎪⎪⎨
⎪⎪⎩
z∗k,1 = −8xk + 4yk,1 + 8yk,2

z∗k,2 = −6xk + 2yk,1 + 4yk,2

z∗k,3 = −4xk + 2yk,2.

Consequently, ⎧⎪⎪⎨
⎪⎪⎩
z∗k+1,1 = −8xk+1 + 4yk+1,1 + 8yk+1,2 = −6xk + 2yk,1 + 4yk,2 = z∗k,2
z∗k+1,2 = −6xk+1 + 2yk+1,1 + 4yk+1,2 = −4xk + 2yk,2 = z∗k,3
z∗k+1,3 = −4xk+1 + 2yk+1,2 = −3xk − yk,1 + uk = u∗k.

Thus, for h0 = ln2, the Brunovský canonical form of the discrete first approximation system cor-
responding to system (16) is given by ⎧⎪⎪⎨

⎪⎪⎩
z∗k+1,1 = z∗k,2
z∗k+1,2 = z∗k,3
z∗k+1,3 =u∗k,

where u∗k = −3xk − yk,1 + uk. As is easily verified, u∗k = αzk + uk, where α = f(h0)A
3(h0).
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Let us find a stabilizing control law for system (16).

We have uk = S∗zk, S∗ = pS − α, u∗k = pz∗k, where p = [p1 p2 p3], p1, p2, and p3 are the coef-
ficients of the characteristic equation of the last system of equations:

λ3 − p3λ
2 − p2λ− p1 = 0.

Since the choice of these coefficients is arbitrary, we assign them so that the roots λ1, λ2, and λ3

of the characteristic equation lie inside the unit circle.

Taking λ1,2,3 =
1
2 yields λ3 − 3

2λ
2 + 3

4λ− 1
8 = 0, and p = [18 −3

4
3
2 ], α = [−3 −1 0]; hence,

S∗ = [12 0 1], and uk =
1
2xk+yk,2 is the desired control law.

Indeed, for h0 = ln2, substituting this control law into the discrete system (12) corresponding
to system (16) gives the matrix (A(h0) + bS∗), for which all eigenvalues are equal to 1

2 (smaller
than 1 by their magnitude). Based on the proof of Theorem 4 (see the Appendix), we conclude
that system (16) is stabilizable for h0 = ln2 by the control law uk = 1

2xk + yk,2.

Consider an important special case of system (1) in which n = m = q = 1. In this case, system (1)
contains scalar equations and is equivalent to the hybrid system{

x′(t) = a1x(t) + b1yk + a(x(t), yk) , tk � t < tk+1

yk+1 = a2xk+1 + b2yk + cuk + b(xk+1, yk, uk) , k = 0, 1, 2, . . . ,
(17)

where a1 = f ′
x(0, 0), b1 = f ′

y(0, 0), a2 = g′x(0, 0, 0), b2 = g′y(0, 0, 0), and c = g′u(0, 0, 0) are numbers,
and the smooth nonlinearities a(x, y) and b(x, y, u) satisfy the relations

a(x, y) = o(|x|+ |y|) as |x|+ |y| → 0,

b(x, y, u) = o(|x|+ |y|+ |u|) as |x|+ |y|+ |u| → 0 .

The nonlinear discrete system equivalent to system (17) has the first approximation system (12)
with

A(h) =

⎡
⎢⎢⎢⎣

ea1h
b1
a1

(ea1h − 1)

a2e
a1h

a2b1
a1

(ea1h − 1) + b2

⎤
⎥⎥⎥⎦ , b =

[
0
c

]
. (18)

Then the following result is true.

Theorem 5. If the hybrid system (1) contains scalar equations, and a1 = 0, b1 = 0, and c = 0 in
the equivalent system (17), system (1) will be stabilizable for any h > 0.

In this case, the stabilizing control law is found by the algorithm demonstrated in Example 1.

5. STABILIZATION OF SYSTEM (1) WITH VECTOR CONTROL

Let n � 1, m > 1, and q > 1 in the hybrid system (1), i.e., the discrete system (11) serves as
the first approximation system for the equivalent discrete system (8). Assume that system (11)
satisfies the complete reachability condition for h = h0 > 0 :

rank [B,A(h0)B,A2(h0)B, . . . , An+m−1(h0)B] = n+m. (19)

Theorem 6. If system (11) satisfies condition (19), there will exist a transformation

z∗k = Szk, u∗k,l = αlzk + uk,l, detS = 0, l = 1, . . . , q, (20)

reducing system (11) to a set of q independent subsystems, each having the Brunovský canonical
form.
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By the proof of this theorem (see the Appendix), the original system (11) decomposes into
q independent subsystems of the form (15) whose dimensions are s1, . . . , sq, with s1+s2+ . . .+sq =
n+m. Then we have the following result.

Theorem 7. If the linear discrete system (11) satisfies condition (19), it will be stabilizable for
h = h0 > 0.

The proof of Theorem 7 (see the Appendix) and equalities (20) lead to another fact.

Corollary 2. The stabilizing control law for the discrete system (11) has the form

uk = S∗zk,

where uk,l = s∗l zk, s
∗
l = pSl − αl, u

∗
k,l = pz∗kl, Sl is part of the matrix S corresponding to the lth sub-

system (l = 1, . . . , q), p is a vector of dimension sl, z
∗
kl is the vector containing sl components of

the vector z∗k corresponding to the lth subsystem, and s∗l are the rows of the matrix S∗. In addition,
all eigenvalues of the matrix (A(h0) +BS∗) are smaller than 1 by their magnitude.

Theorem 8. If the linear discrete system (11) satisfies condition (19), the corresponding nonlin-
ear hybrid system (1) will be stabilizable for h = h0 > 0.

Example 2. It is required to construct a stabilizing control law for a hybrid system of the form⎧⎪⎨
⎪⎩

x′(t) = −2x(t) + 2yk,1 − 2yk,2 + a(x(t), yk), tk � t < tk+1

yk+1,1 = −xk+1 + uk,1 − uk,2 + b1(xk+1, yk, uk)

yk+1,2 = xk+1 − yk,1 + yk,2 + uk,1 + 2uk,2 + b2(xk+1, yk, uk), k = 0, 1, 2, . . . ,

where x∈R1, y∈R2, u∈R2, a(x, y), b1(x, y, u), and b2(x, y, u) are smooth nonlinearities in accor-
dance with system (5), by reducing the corresponding discrete first approximation system to a set
of independent subsystems written in the Brunovský canonical form.

For this system, the corresponding discrete system (11) has the matrices

A(h) =

⎡
⎢⎣ e−2h 1− e−2h e−2h − 1
−e−2h e−2h − 1 1− e−2h

e−2h −e−2h e−2h

⎤
⎥⎦ , B =

⎡
⎢⎣ 0 0
1 −1
1 2

⎤
⎥⎦ .

Then we obtain

[B,A(h)B,A2(h)B] =

⎡
⎢⎣ 0 0 0 3(e−2h − 1) 0 (e−2h − 1)(9e−2h − 3)

1 −1 0 3(1 − e−2h) 0 (e−2h − 1)(3 − 9e−2h)

1 2 0 3e−2h 0 e−2h(9e−2h − 6)

⎤
⎥⎦ ,

and rank [B,A(h)B,A2(h)B] = 3 for any h > 0. Hence, the corresponding linear discrete system (11)
is controllable for any h > 0.

Let h0 = ln3, and let b1 and b2 be the columns of the matrix B. Then

A0 = A(h0) =

⎡
⎢⎣ 1/9 8/9 −8/9
−1/9 −8/9 8/9
1/9 −1/9 1/9

⎤
⎥⎦ .

From the column sequence (b1, b2, A0b1, A0b2, A
2
0b1, A

2
0b2) we compile the matrix F0 of order 3 and

rank 3. Note that the matrix A0b1 is a zero column, so the columns A0b1, and A2
0b1 are excluded

from consideration.
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We have A0b2 = [−8/3 8/3 1/3]T ; therefore, s1 = 1, s2 = 2, and F0 = [b1, b2, A0b2], i.e.,

F0 =

⎡
⎢⎣ 0 0 −8/3
1 −1 8/3
1 2 1/3

⎤
⎥⎦ , F−1

0 =

⎡
⎢⎣ 17/24 2/3 1/3
−7/24 −1/3 1/3
−3/8 0 0

⎤
⎥⎦ ,

k = 1, 2, since rankB = 2.

k = 1 :
k∑

j=1

sj = s1 = 1, hence, f1 is the first row of the matrix F−1
0 .

k = 2 :
k∑

j=1

sj = s1+ s2 = 3, hence, f2 is the third row of the matrix F−1
0 .

S =

⎡
⎢⎣ f1

f2
f2A0

⎤
⎥⎦ , i.e., S =

⎡
⎢⎣ 17/24 2/3 1/3

−3/8 0 0
−1/24 −1/3 1/3

⎤
⎥⎦ .

z∗k = Szk, then

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z∗k,1 =
17

24
xk +

2

3
yk,1 +

1

3
yk,2

z∗k,2 = −3

8
xk

z∗k,3 = − 1

24
xk − 1

3
yk,1 +

1

3
yk,2, k = 0, 1, 2, . . . ,

z∗k+1,1 = u∗k,1, where u∗k,1 = f1A
s1
0 zk + uk,1 = f1A0zk + uk,1 =

1

24
xk + uk,1;

z∗k+1,2 = z∗k,3; z
∗
k+1,3 = u∗k,2, where u∗k,2 = f2A

s2
0 zk + uk,2 =

5

72
xk +

2

9
yk,1 − 2

9
yk,2 + uk,2.

Thus, for h0 = ln3, the set of the Brunovský canonical forms for the linear discrete system
corresponding to the original system has the form⎧⎪⎨

⎪⎩
z∗k+1,1 = u∗k,1
z∗k+1,2 = z∗k,3
z∗k+1,3 = u∗k,2.

Now we find a stabilizing control law for the corresponding linear discrete system for h0 = ln3.

1) u∗k,1 = pz∗k1, where p = p1, z∗k1 = z∗k,1, since s1 = 1, z∗k+1,1 = pz∗k,1, and then λ = p. Letting

λ = 1
3 yields p = 1

3 , α1 = f1A0 = [ 1
24 0 0], S1 = f1, and, hence, s

∗
1 = pS1 − α1 = [ 7

36
2
9

1
9 ],

uk,1 = s∗1zk, i.e., uk,1 =
7
36xk +

2
9yk,1 +

1
9yk,2;

2) u∗k,2 = pz∗k2, where p = [p1 p2], z
∗
k2 = [z∗k,2 z∗k,3]

T , since s2 = 2, z∗k+1,3 = p1z
∗
k,2 + p2z

∗
k,3, and

then λ2 − p2λ− p1 = 0.

Letting λ1,2 =
1
3 yields λ2 − 2

3λ+ 1
9 = 0, and p = [−1

9
2
3 ];

α2 = f2A
2
0 = [5/72 2/9 − 2/9], S2 =

[
−3/8 0 0
−1/24 −1/3 1/3

]
,

s∗2 = pS2 − α2 = [−1/18 −4/9 4/9], i.e., uk,2 = − 1

18
xk − 4

9
yk,1 +

4

9
yk,2.

Thus, the stabilizing control law has the form

uk =

⎡
⎢⎢⎣

7

36
xk +

2

9
yk,1 +

1

9
yk,2

− 1

18
xk − 4

9
yk,1 +

4

9
yk,2

⎤
⎥⎥⎦ .
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This law also stabilizes the original nonlinear hybrid system because

S∗ =

[
7/36 2/9 1/9
−1/18 −4/9 4/9

]
, A0 +BS∗ =

⎡
⎢⎣ 1/9 8/9 −8/9
5/36 −2/9 5/9
7/36 −7/9 10/9

⎤
⎥⎦ ,

and the matrix (A0 +BS∗) has the eigenvalues λ1,2,3 =
1
3 , i.e., |λ1,2,3| < 1.

6. CONCLUSIONS

This paper has established a general sufficient condition for stabilizing nonlinear continuous–
discrete systems of the form (1) with both one-dimensional (scalar) and multidimensional (vector)
control. This condition is based on the complete reachability of the first approximation systems of
the corresponding equivalent nonlinear discrete dynamic systems.

A general approach to stabilizing the nonlinear hybrid systems (1) with control of different
dimensions has been presented, and stabilizing control laws for such systems have been designed.
The approach can be used to ensure stable operation modes for real technical, mechanical, and
other control systems with a heterogeneous structure as well as to construct admissible and optimal
control laws for such systems.

APPENDIX

Proof of Theorem 1. The desired result follows from the equivalence of systems (1) and (8),
which considers the relation of their solutions, and from the definitions of controllable systems.

The proof of Theorem 1 is complete.

Proof of Theorem 2. Since the linear discrete system (12) satisfies condition (13), the matrix

F (h0) =
[
b, A(h0)b, A

2(h0)b, . . . , A
n+m−1(h0)b

]
is nonsingular, i.e., there exists the inverse F−1(h0).

Let the vector f(h0) ∈ Rn+m be composed of the elements of the last row of the matrix F−1(h0)
[27]. In view of the definition of an inverse, we obtain

f(h0)b = f(h0)A(h0)b = . . . = f(h0)A
n+m−2(h0)b = 0, (A.1)

f(h0)A
n+m−1(h0)b = 1. (A.2)

Letting ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z∗k,1 = f(h0)zk

z∗k,2 = f(h0)A(h0)zk

z∗k,3 = f(h0)A
2(h0)zk

...
z∗k,n+m = f(h0)A

n+m−1(h0)zk

(A.3)

yields z∗k = Szk, where S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f(h0)

f(h0)A(h0)

f(h0)A
2(h0)

...
f(h0)A

n+m−1(h0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, and detS = 0 since the discrete system (12)

satisfies condition (13).
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For h = h0 > 0, system (12) takes the form

zk+1 = A(h0)zk + buk, k = 0, 1, 2, . . . ;

due to (A.1) and (A.2), from equalities (A.3) it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z∗k+1,1 = f(h0)zk+1 = z∗k,2
z∗k+1,2 = f(h0)A(h0)zk+1 = z∗k,3

...
z∗k+1,n+m−1 = f(h0)A

n+m−2(h0)zk+1 = z∗k,n+m

z∗k+1,n+m = f(h0)A
n+m−1(h0)zk+1 = αzk + uk,

(A.4)

where α = f(h0)A
n+m(h0).

Therefore, system (A.4) is given by (15) with u∗k = αzk + uk and is equivalent to the discrete
system (12) for h = h0 > 0.

The proof of Theorem 2 is complete.

Proof of Theorem 3. As the discrete system (12) satisfies condition (13), by Theorem 2 it can
be represented in the form (15).

Let u∗k = pz∗k, where p = [p1 p2 . . . pn+m]; then system (15) takes the form

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

z∗k+1,1 = z∗k,2
z∗k+1,2 = z∗k,3

...
z∗k+1,n+m−1 = z∗k,n+m

z∗k+1,n+m = p1z
∗
k,1 + p2z

∗
k,2 + . . .+ pn+mz∗k,n+m.

(A.5)

In addition, let z∗k,1 = λ0 = 1, z∗k,2 = z∗k+1,1 = λ, z∗k,3 = z∗k+1,2 = z∗k+2,1 = λ2, . . . , z∗k,n+m = λn+m−1,
and z∗k+1,n+m = λn+m. Then system (A.5) is reduced to the equation

λn+m − pn+mλn+m−1 − pn+m−1λ
n+m−2 − . . . − p2λ− p1 = 0. (A.6)

Equation (A.6) is characteristic for the matrix of system (A.5). Since the choice of the coefficients
of equation (A.6) is arbitrary, we assign them so that |λi| < 1, i = 1, . . . , n+m. Then system (15)
with the control law u∗k = pz∗k has the asymptotically stable solution z∗k = 0. Hence, the discrete
system (12) represented in the form (15) is stabilizable for h = h0 > 0, and the proof of Theorem 3
is complete.

Proof of Theorem 4. The desired result is immediate from Corollary 1, the relation (10),
and the sufficient condition for the asymptotic stability of the trivial equilibrium of the nonlinear
continuous–discrete system (1) obtained in [23]. The proof of Theorem 4 is complete.

Proof of Theorem 5. It can shown that if a1 = 0, b1 = 0, and c = 0 in the nonlinear hybrid sys-
tem (17), the corresponding discrete system (12) with the matrices (18) will satisfy condition (13).
In this case, the desired result is true based on Theorem 4. The proof of Theorem 5 is complete.

Proof of Theorem 6. Without losing generality, we suppose that rankB = q, q > 1. Let b1, . . . , bq
be the columns of the matrix B, A0 = A(h0), and the discrete system (11) satisfy condition (19).

From the column sequence (see [27])
(b1, b2, . . . , bq, A0b1, A0b2, . . . , A0bq, A

2
0b1, A

2
0b2, . . . , A

2
0bq, . . . , A

n+m−1
0 b1, . . . , A

n+m−1
0 bq)
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we compile the matrix F0 = F (h0) of the same order and rank (n+m) :

F0 = [b1, A0b1, A
2
0b1, . . . , A

s1−1
0 b1, b2, A0b2, A

2
0b2, . . . ,

As2−1
0 b2, . . . , bq, A0bq, A

2
0bq, . . . , A

sq−1
0 bq].

(A.7)

For each column bk, the matrix (A.7) should include all columns bk, A0bk, A
2
0bk, . . . , A

sk−1
0 bk, where

sk = 1, . . . , n+m, k = 1, . . . , q, with each column Aj
0bk (j = 0, 1, . . . , n +m− 1) being included if

it forms a linearly independent system with all preceding columns in this matrix. Otherwise, the
columns Aj

0bk, A
j+1
0 bk, . . . , A

n+m−1
0 bk are excluded from consideration.

Since rankF0 = n+m, there exists the inverse F−1
0 . Let fk (k = 1, . . . , q) denote the row of the

matrix F−1
0 numbered by

k∑
j=1

sj. According to the definition of an inverse, we obtain the conditions

fkA
j−1
0 bi = 0, (k = i) ∨ (j = sk), (A.8)

fkA
sk−1
0 bk = 1. (A.9)

Let ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z∗k,1 = f1zk

z∗k,2 = f1A0zk
...

z∗k,s1 = f1A
s1−1
0 zk

z∗k,s1+1 = f2zk

z∗k,s1+2 = f2A0zk
...

z∗k,s1+s2
= f2A

s2−1
0 zk

...

z∗k,s1+s2+...+sq
= fqA

sq−1
0 zk,

(A.10)

where s1 + s2 + . . . + sq = n + m. Then z∗k = Szk, where S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f1A0
...

f1A
s1−1
0

f2

f2A0
...

f2A
s2−1
0
...

fq
...

fqA
sq−1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, S is a matrix of

order (n+m) with detS = 0 because the discrete system (11) satisfies condition (19).

Then z∗k+1 = Szk+1; for h = h0 > 0, the discrete system (11) takes the form

zk+1 = A0zk +Buk.
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Considering (A.8)–(A.10), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z∗k+1,1 = f1A0zk + f1Buk = f1A0zk = z∗k,2
z∗k+1,2 = f1A

2
0zk + f1A0Buk = f1A

2
0zk = z∗k,3

...

z∗k+1,s1
= f1A

s1
0 zk + f1A

s1−1
0 Buk = f1A

s1
0 zk + uk,1 = u∗k,1

z∗k+1,s1+1 = f2A0zk + f2Buk = z∗k,s1+2
...

z∗k+1,s1+s2
= f2A

s2
0 zk + f2A

s2−1
0 Buk = f2A

s2
0 zk + uk,2 = u∗k,2

...

z∗k+1,s1+s2+...+sq
= fqA

sq
0 zk + fqA

sq−1
0 Buk = fqA

sq
0 zk + uk,q = u∗k,q .

Thus, for h = h0 > 0, the transformation (20) reduces the discrete system (11) to a set of q inde-
pendent subsystems in the Brunovský canonical form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z∗k+1,1 = z∗k,2
z∗k+1,2 = z∗k,3

...
z∗k+1,s1

= u∗k,1
z∗k+1,s1+1 = z∗k,s1+2

...
z∗k+1,s1+s2

= u∗k,2
...

z∗k+1,s1+s2+...+sq−1 = z∗k,s1+s2+...+sq

z∗k+1,n+m = u∗k,q .

(A.11)

The dimensions of these subsystems (the number of equations figuring in them) are s1, s2, . . . , sq,
respectively. In addition, u∗k,l = αlzk + uk,l (l = 1, . . . , q) are the components of the control vector,
and αl = flA

sl
0 . The discrete system (11) is equivalent to system (A.11) for h = h0 > 0.

The proof of Theorem 6 is complete.

Proof of Theorem 7. By the proof of Theorem 3, each of the q subsystems in (A.11) has an
asymptotically stable solution z∗ = 0 under appropriate control laws. In this case, system (A.11)
has the asymptotically stable trivial solution. Hence, the equivalent system (11) is stabilizable for
h = h0 > 0.

The proof of Theorem 7 is complete.

Proof of Theorem 8. It follows from Theorem 7 that the discrete system (11) is stabilizable for
h = h0 > 0 and, according to Corollary 2, all eigenvalues of the matrix (A0 +BS∗) are smaller than
1 by their magnitude. Then the desired result is immediate from the relation (10) and the sufficient
condition for the asymptotic stability of the trivial equilibrium of the nonlinear continuous–discrete
system (1) obtained in [23].

The proof of Theorem 8 is complete.
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